This topical and timely textbook is a collection of problems for students, researchers, and practitioners interested in state-of-the-art material and device applications in quantum mechanics. Most problem are relevant either to a new device or a device concept or to current research topics which could spawn new technology. It deals with the practical aspects of the field, presenting a broad range of essential topics currently at the leading edge of technological innovation.

Includes discussion on:

Properties of Schroedinger Equation

Operators

Bound States in Nanostructures

Current and Energy Flux Densities in Nanostructures

Density of States

Transfer and Scattering Matrix Formalisms for Modelling Diffusive Quantum Transport

Perturbation Theory, Variational Approach and their Applications to Device Problems

Electrons in a Magnetic or Electromagnetic Field and Associated Phenomena

Time-dependent Perturbation Theory and its Applications

Optical Properties of Nanostructures

Problems in Quantum Mechanics: For Material Scientists, Applied Physicists and Device Engineers is an ideal companion to engineering, condensed matter physics or materials science curricula. It appeals to future and present engineers, physicists, and materials scientists, as well as professionals in these fields needing more in-depth understanding of nanotechnology and nanoscience.

]]>Praise for the 1st Edition:

"well written and up to date#65533;. The problem sets at the end of each chapter reinforce and enhance the material presented, and may give students confidence in handling real-world problems." #65533; Optics & Photonics News

"rigorous but simple description of a difficult field keeps the reader#65533;s attention throughout#65533;. serves perfectly for an introductory-level course." #65533; Physics Today

This fully revised introduction enables the reader to understand and use the basic principles related to many phenomena in nonlinear optics and provides the mathematical tools necessary to solve application-relevant problems. The book is a pedagogical guide aimed at a diverse audience including engineers, physicists, and chemists who want a tiered approach to understanding nonlinear optics. The material is augmented by numerous problems, with many requiring the reader to perform real-world calculations for a range of fields, from optical communications to remote sensing and quantum information. Analytical solutions of equations are covered in detail and numerical approaches to solving problems are explained and demonstrated. The second edition expands the earlier treatment and includes:

A new chapter on quantum nonlinear optics. Thorough treatment of parametric optical processes covering birefringence, tolerances and beam optimization to design and build high conversion efficiency devices. Treatment of numerical methods to solving sets of complex nonlinear equations. Many problems in each chapter to challenge reader comprehension. Extended treatment of four-wave mixing and solitons. Coverage of ultrafast pulse propagation including walk-off effects.]]>Environmental Carbon Footprints: Industrial Case Studies provides a wide range of industrial case-studies, beginning with textiles, energy systems and bio-fuels. Each footprint is associated with background information, scientific consensus and the reason behind its invention, methodological framework, assessment checklist, calculation tool/technique, applications, challenges and limitations. More importantly, applications of each indicator/framework in various industrial sectors and their associated challenges are presented. As case studies are the most flexible of all research designs, this book allows researchers to retain the holistic characteristics of real-life events while investigating empirical events.

Includes case studies from various industries, such as textiles, energy systems and conventional and bio-fuels Provides the calculation tool/technique, applications, challenges and limitations for determining carbon footprints on an industry by industry basis Presents the background information, scientific consensus and reason behind each case study]]>This thesis introduces the concept of "thermal pure quantum (TPQ) states", which are pure quantum states in equilibrium. The author establishes a new formulation of statistical mechanics based on the TPQ states. This formulation allows us to obtain not only mechanical variables but also thermodynamic variables such as entropy and free energy from a single TPQ state. Furthermore, the formulation provides a new physical description in which all fluctuations including thermally driven ones are uniquely identified to be quantum fluctuations.

The use of TPQ formulation has practical advantages in its application to numerical computations and allows for significant reduction in computation cost in numerics. For demonstration purposes, a numerical computation based on TPQ formulation is applied to a frustrated two-dimensional quantum spin model, and the result is also included in this book.

]]>Quantum mechanics is a subtle subject that usually involves complicated mathematics -- calculus, partial differential equations, etc., for complete understanding. Most texts for general audiences avoid all mathematics. The result is that the reader misses almost all deep understanding of the subject, much of which can be probed with just high-school level algebra and trigonometry. Thus, readers with that level of mathematics can learn so much more about this fundamental science.

The book starts with a discussion of the basic physics of waves (an appendix reviews some necessary classical physics concepts) and then introduces the fundamentals of quantum mechanics, including the wave function, superposition, entanglement, Bell's theorem, etc., and applications to Bose--Einstein condensation, quantum computing, and much more. The interpretation of the mathematics of quantum mechanics into a world view has been the subject of much controversy. The result is a variety of conflicting interpretations, from the famous Copenhagen view of Bohr to the multiple universes of Everett. We discuss these interpretations in the chapter "What is a wave function?" and include some very recent advances, for example, quantum Bayesianism, and measurements of the reality of the wave function.

]]>

Field theory is an important topic in theoretical physics, which is studied in the physical and physico-mathematical departments of universities. Therefore, lecturers are faced with the urgent task of not only providing students with information about the subject, but also to help them master the material at a deep qualitative level, by presenting the specific features of general approaches to the statement and the solution of problems in theoretical physics. One of the ways to study field theory is the practical one, where the students can deepen their knowledge of the theoretical material and develop problem-solving skills. This book includes a concise theoretical summary of the main branches of field theory and electrodynamics, worked examples, and some problems for the student to solve.

The book is written for students of theoretical and applied physics, and corresponds to the curricula of the theoretical courses "Field theory" and "Electrodynamics" for physics undergraduates. It can also be useful for students of other disciplines, in particular, those in which physics is one of the base subjects.

]]>When winter ends, spring begins! The days get longer and the air gets warmer. Trees and flowers bloom and animals have their babies. Spring is the perfect time to have fun! Preschoolers will love this lyrical yet simple introduction to the wondrous surprises brought by spring. Featuring detailed photographs exploding with color, Hello Spring familiarizes children with the changes in plant and animal life that occur during a temperate spring. A glossary is included.

]]>With gorgeous photo illustrations, award-winning author April Pulley Sayre explores the transformation trees undergo in fall. The book takes readers through the leaves' initial change from green to red, yellow, and orange, the shedding of the leaves, and the leaves crumbling as winter approaches. Extensive back matter explains the science behind this process to the youngest of budding scientists.]]>