Archive and share data
Where to share data
There are many ways that researchers can share their data. These include:
- Depositing in a discipline-specific data repository
- Depositing in a general purpose repository
- Depositing in an institutional or recommended repository
- Publishing a data paper
Criteria in selecting a data repository
Source: University of Iowa
- FAIR Principles: FAIR means that data publishing platforms should enable data to be Findable, Accessible, Interoperable, and Re-usable. The FORCE11 FAIR Principles (simplified here) are:
- To be Findable any Data Object should be uniquely and persistently identifiable (have an identifer, such as a DOI)
- Data is Accessible in that it can be always obtained by machines and humans, upon authorization, through a well-defined protocol
- Data Objects are Interoperable (i.e. interpretable by a computer, so that they can be automatically combined with other data) if metadata and data use community agreed formats, language, vocabularies, and standards.
- Data Objects are Re-Usable if the above are met, if the data can be automatically linked or integrated with other data sources, with proper citation of the source, and have a clear machine-readable licence.
- Cost: Is there a cost to depositing data? Is it ongoing? Are these costs budgeted for?
- Discoverability: Are there adequate metadata fields to describe your data? Is the repository indexed by Google?
- Persistent identifiers: Does the repository register your data to create a persistent identifier (eg. a DOI)? These are necessary for citing your data.
- Policies and licenses: Are data use agreements and/or licensing (Creative Commons) clearly presented, to allow depositors to state explicitly up front what uses they would be willing to allow?
- Scholarly impact: Does it track data citation or download?
- Certification: It is possible for repositories to get certification (eg. CoreTrust Seal of Approval) which indicates how well they preserve digital content. Although good to have, note that very few repositories have achieved certification.
Discipline-specific data repositories
Discipline-spcific or domain repositories accept datasets related to either a specific discipline (e.g. genomics) or a broad subject-area (e.g. social sciences). Some repositories allow for self-archival and will provide limited or no curation service; others, like ICPSR, will provide in-depth curation services to subscribing institutions (Concordia is an ICPSR member) provided that the data fits within their collection development policy.
- Search for a disciplinary data repository:
- re3data.org (Registry of Data Repositories)
- PLoS ONE Recommended repositories (by discipline)
- Springer Nature Recommended repositories (by discipline)
General-purpose repositories
If a discipline-specific repository is not available, general-purpose repositories are the next best option. They typically accept a wide range of data types, and are suitable for cross-disciplinary data. Below are some examples:
Canadian general-purpose repositories
Concordia University Dataverse (from Borealis) |
|
---|---|
Description | Concordia Library service offer |
Why should you use this repository?
Ready to deposit? Consult the following:
Need help?: |
What we offer:
|
Federated Data Research Repository (FRDR): |
|
|
Other commonly used general-purpose repositories
Dryad | Non-profit repository allowing a total storage space of 50GB for US$120. |
---|---|
Figshare | Commercial repository allowing a total storage space of 20GB for free. |
Open ICPSR | Accepts social and behavioural science research data. Different levels of curation services (from none to complete) are offered at varying prices. |
OSF | Open Science Framework (OSF) is a free and open source project management repository that supports researchers across their entire project lifecycle. |
Zenodo | A multidisciplinary platform hosted by CERN. Accepts all research outputs from all fields of science. |
See also: Generalist repository comparison chart
Institutional or recommended repository
Institutional repositories
Depositing in discipline-specific or general-purpose repositories is encouraged, as they are generally better suited for data curation and dissemination. However, if there is no suitable discipline-specific repository for your dataset, and you do not wish to deposit in the Concordia University Dataverse repository, consider using Spectrum, Concordia University's institutional repository.
Recommended repositories
Some journals are requiring that researchers make the data associated with their papers publicly available to facilitate verification and replication of results. These publishers may either recommend a data repository, and in some cases, require that authors deposit their data in a specific repository. Note that if there is a cost to depositing data, it may be covered either by the submitter or by the publisher.
Below are examples of publisher recommended data repositories:
- Nature
- PLoS (including Criteria for recommended data repositories)
Data papers
Data papers describe datasets, and do not typically include any interpretation or discussion. Data papers are published either in a journal’s “Data Papers” section, or in a journal that exclusively publishes data papers (for example, see Nature’s Scientific Data).
According to Oregon State University:
"The purpose of a data journal is to provide quick access to high-quality datasets that are of broad interest to the scientific community. They are intended to facilitate reuse of the dataset, which increases its original value and impact, and speeds the pace of research by avoiding unintentional duplication of effort."